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Chapter 27

VIRTUAL MAGNETIC RESONANCE LOGS, A LOW COST RESERVOIR
DESCRIPTION TOOL

SHAHAB D.  MOHAGHEGH 1

West Virginia University, 345E Mineral Resources Building, Morgantown, WV 26506, USA

ABSTRACT

Magnetic resonance imaging (MRI) logs are well logs that use nuclear magnetic res-
onance to accurately measure free fluid, irreducible water (MBVI), and effective porosity
(MPHI). Permeability is then calculated using a mathematical function that incorporates
these measured properties. This paper describes the methodology developed to generate
synthetic magnetic resonance imaging logs using data obtained by conventional well logs
such as spontaneous potential (SP), gamma-ray, caliper, and resistivity. The synthetically
generated logs are named virtual magnetic resonance logs or ‘VMRL’ for short.

Magnetic resonance logs provide the capability of in-situ measurement of reservoir
characteristics. The study also examines and provides alternatives for situations in which
all required conventional logs are unavailable for a particular well. Synthetic magnetic
resonance logs for wells with an incomplete suite of conventional logs are generated and
compared with actual magnetic resonance logs for the same well.

In order to demonstrate the feasibility of the concept being introduced here, the
methodology is applied in two different fashions. First, it is applied to four wells; each
from a different part of the country. These wells are located in East Texas, Gulf of
Mexico, Utah, and New Mexico. Since only one well from each region is available,
the model is developed using a segment of the pay zone and consequently is applied
to the rest of the pay zone. In a second approach, the technique is applied to a set of
wells in a highly heterogeneous reservoir in East Texas. Here the model was developed
using a set of wells and then was verified by applying it to a well away from the wells
used during the development process. This technique is capable of providing a better
reservoir description (effective porosity, fluid saturation, and permeability) and more
realistic reserve estimation at a much lower cost.

1. INTRODUCTION

Austin and Faulkner (1993) published a paper in August 1993 in ‘The American Oil
and Gas Reporter’ providing some valuable information about the Magnetic Resonance
Logging technique and its benefits to low resistivity reservoirs.
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The MR log measures effective porosity – total porosity minus the clay bound
porosity – as well as irreducible water saturation. The irreducible water saturation is
the combinations of clay bound water and water held due to the surface tension of the
matrix material. The difference between effective porosity (MPHI) and the irreducible
water saturation (MBVI) is called the free fluid index. This is the producible fluid in
the reservoir. This demonstrates how valuable MR log is to low resistivity reservoirs.
In many low resistivity reservoirs, matrix irreducible water rather than producible water
may cause a drop in resistivity. While producible water can seriously hamper production
and make the pay quite unattractive, the same cannot be said for the irreducible water.
Therefore, a reservoir that seems to be a poor candidate for further development –
looking only at the conventional logs – may prove to be an attractive prospect once MR
log is employed.

MRI logs may provide information that results in an increase in the recoverable
reserves. This takes place simply by including the portions of the pay zone into the
recoverable reserve calculations that were excluded during the analysis using only the
conventional well logs. General background about neural networks has been published
in numerous papers and will not be repeated in this paper. An example of such
publications is included in the references Mohaghegh et al. (1995; 1996a,b; 1997).

As was mentioned earlier, in this study the developed technique is applied in two
different ways. In the first attempt the author will show that it is possible to generate
virtual magnetic resonance logs using conventional wireline logs. The concept is tested
on several wells from different locations in the United States and the Gulf of Mexico. It
is demonstrated that using artificial neural networks, it is possible to generate accurate
virtual magnetic resonance logs. In this segment of the study part of the pay zone is
used for the model development and then the model is tested on the rest of the pay zone.
It is further demonstrated that using the virtual magnetic resonance logs for reserve
calculation provides very accurate estimations (within 3%) when compared to reserve
estimation obtained by actual magnetic resonance logs.

In the second attempt, which is considered to be the ultimate test for this method-
ology, it is tested in a manner that would simulate its actual use. This time data from
several wells in a particular field is available. This methodology would work best
when conventional logs are available from most of the wells in the field and magnetic
resonance logs are performed only on a handful of wells (these wells should also have
the conventional logs). The wells with magnetic resonance log are used for model
development and consequent testing and verification of the model. Then the developed
(and verified) model is applied to all the wells in the field. This would generate a
much better and more realistic picture of the reservoir characteristics for the entire field.
Having such an accurate picture of reservoir characteristics would be a valuable asset
for any study that requires accurate reservoir description such as, reservoir simulation,
modeling, and reservoir management.

In the second part of this article, the methodology is applied to a field in East Texas
(Cotton Valley formation) that is known for its heterogeneity as well as for the fact
that the well logs and reservoir characteristics are non-correlatable from well to well.
A recently published paper (Mohaghegh et al., 1999) demonstrated the non-correlatable
nature of formation characteristics and well logs in this formation.
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2. METHODOLOGY

In this section the procedure and methodology for completing this study is explained.
This section is divided into two parts. First, the methodology for the intra-well virtual
magnetic resonance logs is covered. This is the first part of the study, where wells from
different parts of the country are used to show the robustness of the methodology with
respect to the type of the formation it is being applied to. The second part of this study
is concentrated on one particular formation, Cotton Valley in East Texas. In this part,
it is demonstrated that the methodology can be applied to a particular field and can
considerably reduce the cost of reservoir characterization.

2.1. Wells from different formations

Four wells from different locations in the United States are used to demonstrate the
development of virtual MRI logs. These wells are from East Texas, New Mexico, Utah,
and Gulf of Mexico. These wells are from different formations and since the virtual
MR methodology is a formation specific process, there was no option but to test the
methodology using single wells. In this section, part of the pay zone will be used to
develop the model and then the model is verified by using the remainder of the pay. The
ideal way to show the actual potential of this methodology is to use several wells from
the same formation (which also is presented in this article). The prerequisite is that both
conventional and MRI logs for the wells should be available. In such a situation, a few
of the wells would be used to develop the model and the remaining wells would be used
for verification purposes.

For each well in this study, gamma-ray, spontaneous potential (SP), caliper, and
resistivity logs were available. These logs were digitized with a resolution of six inches
for the entire pay zone. Thirty percent of the data were chosen randomly for the model
development and the remaining 70% of the pay were used for verification. In all four
cases, the model was able to generate synthetic MR logs with correlation coefficients of
up to 0.97 for data that was not used during the model development process.

The model development process was implemented using a fully connected; five layer
neural network architecture with different activation functions in each layer. These
layers included one input layer, three hidden layers and one output layer. Each of the
hidden layers has been designed to detect distinct features of the model. A schematic
diagram of the network architecture is shown in Fig. 1.

Please note that in this figure all of the neurons and/or connections are not shown.
The purpose of the figure is to show the general architecture of the network used for this
study. A supervised gradient descent backpropagation of error method was used to train
the neural networks. The input layer has six neurons representing depth, gamma-ray,
SP, caliper, medium and deep resistivity. Each hidden layer included five neurons. Upon
completion of the training process, each neural network contained six weight matrices.
Three of the weight matrices had 30 elements while the remaining matrices each had
five. In most cases, acceptable generalization was achieved in less than 500 visits to the
entire training data. Once the network was trained, it was used to generate the virtual
MPHI, MBVI and MPERM logs. The MPHI and MBVI logs were then used to estimate
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Fig. 1. Schematic diagram of the neural networks used in this study.

the reserves. In one case – the well in New Mexico – that was a tight reservoir, the
resolution of the permeability data made it impossible to train an adequate network.

It should be noted that it might be more effective not to use a neural network to
replicate the MPERM log. Since this log is derived from MPHI and MBVI, it would be
better to calculate the virtual MPERM log from the virtual MPHI and MBVI.

Fig. 2. Relative location of wells in the Cotton Valley, East Texas.
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2.2. Wells from the same formation

The study area includes a total of 26 wells. There is magnetic resonance logs
available from only six wells. The other 20 wells have conventional logs but no
magnetic resonance logs. Fig. 2 demonstrates the relative location of the wells. In this
figure wells with magnetic resonance logs are shown with circles and wells that have no
magnetic resonance logs are shown with asterisks. Also no conventional porosity logs
are available for wells with magnetic resonance logs. This could simply be due to the
fact that magnetic resonance logs provides effective porosity values that are much more
accurate than their conventional counterparts such as neutron porosity, density porosity,
and bulk density logs, so not running these logs was an economic decision. Table 1
provides a complete list of the wells and logs that were available for each well in this ? Should type of logs

in Table 1 be
explained?

study.
During the intra-well study, it was observed that existence of porosity indicator logs

such as neutron porosity, density porosity, and bulk density, is helpful during the model
building process. Therefore, it was decided to generate the virtual version of these
logs for the wells with magnetic resonance logs prior to attempting to develop the

TABLE 1

List of the wells in this study and available logs for each well

Well ID CALI SP GR ILD ILM SFL NPHI DPHI RHOB MBVI MPERM MPHI

Beck Fred 5 × × × × × × × ×
Chr. Alice A5 × × × × × × × × ×
Chr. Alice A7 × × × × × × × × ×
Chr. Alice 6 × × × × × × × × ×
Busby 5 × × × × × × × ×
Busby A5 × × × × × × × ×
Chr. Alice B5A × × × × × × × ×
Chr. Alice B2A × × × × × × × × ×
Chr. Alice B4A × × × × × × × × ×
Beck Fred 1 × × × × × × × × ×
Chr. Alice 3 × × × × × × × ×
Chr. Alice 2 × × × × × × × ×
Beck Fred 4 × × × × × ×
Chr. Alice A3 × × × × ×
Chr. Alice A1 × × × × × × ×
Chr. Alice A2 × × × × × × × × ×
Chr. Alice A4 × × × × × × × ×
Busby 2 × × × × × ×
Busby 1 × × × × × × × × ×
Busby A1 × × × × × × × ×
Busby 4 × × × × × × × ×
Chr. Alice A6 × × × × × × ×
Busby 2 × × × × × × × ×
Busby 3 × × × × × × × × ×
Busby A4 × × × × × ×
Busby A3 × × × × × × × × ×
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virtual magnetic resonance logs. Therefore the process of generating virtual magnetic
resonance logs becomes a two-step process. A set of neural networks is trained in order
to provide input for another set of neural networks. This may sound counter-intuitive
from a neural network theoretical point of view. A strong and theoretically sound
argument can be made that since neural networks are model free function estimators,
and since they are part of an armament of tools that are capable of deducing implicit
information form the available data, then adding a set of input values that are essentially
a function of other inputs (since they have been generated using the same inputs) should
not provide any additional information.

Actually, the opposite of this approach is usually practiced. In cases that there are
many input parameters but not as many training records, several analysis including
principal component analysis are used to identify the co-dependency of input parameters
to one another and removing those input parameters that are a function of others inputs.

A possible respond to such an argument would be as follows. Theoretically there is an
ideal neural network structure that when coupled with the ideal training algorithm and
ideal neural network parameters will be able to generate the same result with the original
inputs and there will be no need for supplemental inputs generated by another set of
neural networks, which are the porosity indicator logs such as neutron porosity, density
porosity and bulk density in this case. But since such a network is not available, certain
(not any) functional relationships (that can be based on domain expertise) between input
parameters can indeed help the training and learning process by explicitly revealing
some valuable information. A schematic diagram of the two-step process used for the
development of virtual magnetic resonance logs are presented in Fig. 3.

Fig. 3. Schematic diagram of the process for developing virtual magnetic resonance logs.
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2.3. Synthetic conventional logs

As was mentioned in the previous section the process of developing virtual magnetic
resonance logs starts by generation of synthetic conventional logs. Therefore the wells
that had a complete suite of conventional logs were used to develop a neural network
model that is capable of replicating the conventional logs such as neutron porosity,
density porosity and bulk density for the wells with magnetic resonance logs that lack
these logs.

In order to make sure that the neural network model that we are building provides
accurate suite of porosity indicator logs, well Christian Alice A2 was used as a test well.
This simply means that the data from this well was not used during the training and
model building process; rather it was put aside so the capabilities of the trained neural
network or neural model can be tested and verified. Fig. 4 shows the actual and virtual
versions of all three logs (neutron porosity, density porosity, and bulk density) for the
well Christian Alice A2.

As can be seen in this figure, we have been successful in building a representative
model that is capable of generating virtual porosity indicator logs for this field. The
virtual (synthetic) logs closely follow the trend of the actual logs. All these porosity
indicator logs were generated for the wells with magnetic resonance logs. In order to
further demonstrate the validity of the virtual (synthetic) porosity indicator logs, neutron
porosity logs of three wells were plotted on the same graph. This is shown in Fig. 5. 
These wells (Christian Alice A5, Christian Alice 6 and Christian Alice A2) are in the
proximity of each other. Christian Alice A5 and Christian Alice 6 did not have any
conventional porosity indicator logs and well Christian Alice A2’s conventional porosity
indicator logs were not used during the model development process. Fig. 5 shows the
virtual neutron porosity for all three wells as well as the actual neutron porosity for well
Christian Alice A2. Formation signatures are easily detectable from all these wells. The
distance between these wells Christian Alice A2 and each of the wells Christian Alice
A5 and Christian Alice 6 is about 7000 ft. These distances are indicated with a line in
Fig. 2.

The methodology explained in this section can be used in many different situations
where a complete suite of logs is required for all wells but cannot be accessed due to the
fact that some wells lack some of the logs.

3. RESULTS AND DISCUSSION

Similar to the last section, results and discussions will also be presented separately
for intra-well study and the study of the Cotton Valley field.

Figs. 6 and 7 show the actual and virtual MPHI, MBVI, and MPERM logs for the
well in East Texas. Fig. 6 shows only the verification data set – data never seen by the
network before – while Fig. 7 contains the virtual and actual logs for the entire pay
zone. Virtual effective porosity log (MPHI) has a correlation coefficient of 0.941 for
the verification data set and a 0.967 correlation coefficient for the entire pay zone. The
values for virtual MBVI log are 0.853 and 0.894, respectively. The virtual permeability
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Fig. 4. Actual and virtual porosity indicator logs for well Christian Alice A2.
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Fig. 5. Actual and virtual neutron porosity logs for well Christian Alice A2 along with virtual Nphi for wells
Christian Alice A5 and Christian Alice 6.
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Fig. 6. Virtual and actual MRI logs for the verification data set for the well in East Texas.
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Fig. 7. Virtual and actual MRI logs for the entire pay zone for the well in East Texas.
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log for this well also shows a strong correlation, 0.966 for the verification data set and
0.967 for the entire pay zone.

Figs. 8–13 show similar results for the wells from Utah, Gulf of Mexico, and New
Mexico respectively. In all cases shown in these figures, virtual MRI logs closely follow
the general trends of the actual MRI logs. Please note that MPERM logs are shown in
logarithmic scale and therefore the difference in the lower values of the permeability
can be misleading. The correlation coefficient provides a more realistic mathematical
measure of closeness of these curves to one another.

Table 2 is a summary of the analysis done on all four wells. This Table contains
the correlation coefficients for all the logs that were generated. This table shows the
accuracy of the virtual MR log methodology on wells from different locations in the
United States. The lowest correlation coefficient belongs to virtual MPHI log for the
well located in Utah – 0.800 – while the best correlation coefficient belongs to virtual
MPERM log for the well located in East Texas – 0.966.

Although the correlation coefficients for all the virtual logs are quite satisfactory, it
should be noted that once these logs are used to calculate estimated recoverable reserves,
the results are even more promising. This is due to the fact that many times the effective
porosity and saturation is averaged. After all, MRI logs are used in two different ways.

TABLE 2

Correlation coefficient between actual and virtual MR logs for four wells in the United States

Well location MR log type Data set Corr. coeff.

Texas MPHI Verification 0.941
Entire Well 0.967

MBVI Verification 0.853
Entire Well 0.894

MPERM Verification 0.966
Entire Well 0.967

Utah MPHI Verification 0.800
Entire Well 0.831

MBVI Verification 0.887
Entire Well 0.914

MPERM Verification 0.952
Entire Well 0.963

Gulf Of Mexico MPHI Verification 0.858
Entire Well 0.893

MBVI Verification 0.930
Entire Well 0.940

MPERM Verification 0.945
Entire Well 0.947

New Mexico MPHI Verification 0.957
Entire Well 0.960

MBVI Verification 0.884
Entire Well 0.926
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Fig. 8. Virtual and actual MR logs for the verification data set for the well in Gulf of Mexico.
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Fig. 9. Virtual and actual MRI logs for the entire pay zone for the well in Gulf of Mexico.
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Fig. 10. Virtual and actual MRI logs for the verification data set for the well in Utah.
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Fig. 11. Virtual and actual MRI logs for the entire pay zone for the well in Utah.
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Fig. 12. Virtual and actual MRI logs for the verification data set for the well in New Mexico.
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Fig. 13. Virtual and actual MRI logs for the entire pay zone for the well in New Mexico.
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TABLE 3

A per-acre estimate of the recoverable reserves using actual and virtual MR logs for four wells in the United
States

Well location MR log type Reserve Bbls/acre Percent difference

Texas Actual 52,368 −1.4
Virtual 51,529

New Mexico Actual 24,346 −1.9
Virtual 23,876

Gulf of Mexico Actual 240,616 +0.3
Virtual 241,345

Utah Actual 172,295 −1.8
Virtual 169,194

One-way is to locate and complete portions of the pay zone that have been missed due
to the conventional log analysis. This is more a qualitative analysis than a quantitative
one since the engineer will look for an increase in the difference between MBVI and
MPHI that correspond to a high permeability interval. The second use of these logs is to
estimate the recoverable reserves more realistically.

The reserve estimates calculated using virtual MRI logs when compared to estimates
calculated using actual MRI logs were quite accurate. As shown in Table 3, the reserve
estimates using virtual MRI logs ranged from underestimating the recoverable reserves
by 1.8% to over estimating it by 0.3%.

Figs. 14–17 show the virtual and actual MR logs for wells in East Texas and the Gulf
of Mexico. These logs are shown in the fashion that MRI logs are usually presented.
These logs clearly show the free fluid index – difference between MBVI and MPHI logs
– and the corresponding permeability values. This particular representation of the MRI
logs is very useful to locate the portions of the pay zone that should be completed. The
parts of the pay that has a high free fluid index and corresponds to a reasonably high
permeability value are excellent candidates for completion.

So far it was demonstrated that this methodology presented here is a viable tool for
generating virtual magnetic resonance logs for different formations. As was mentioned
before the objective of this study is to develop a methodology that significantly decreases
the cost of field-wide reservoir characterization by generating virtual magnetic resonance
logs for all the wells in the field. This will be done through selecting a few wells in
the field to be logged using the magnetic resonance logging tools and using this data
to develop an intelligent model that can replicate the magnetic resonance logs for other
wells in the field.

If a company decides to use this methodology on one of its fields it would be
desirable to start by some planning prior to performing any magnetic resonance logging
in the field. This would have an important impact on the modeling process. During the
planning process the number of the wells that should be logged using the magnetic
resonance tools and the location of these well with respect to the rest of the wells in the
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Fig. 14. Virtual MR logs for the well in East Texas
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Fig. 15. Actual MR logs for well in East Texas
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Fig. 16. Virtual MR logs for the well in Gulf of Mexico.
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Fig. 17. Actual MR logs for the well in Gulf of Mexico.

GALAYAA BV / NIKRA27: pp. 605–632



628 S. MOHAGHEGH

field would be among the important consideration. In other cases (such as the one in this
study) we have to do with the data that is available and make the best of it.

As seen in Fig. 2, there are six wells in this part of the field that have magnetic
resonance logs. The goal is to use the magnetic resonance logs from these wells and
develop a predictive, intelligent model that can generate virtual (synthetic) magnetic
resonance logs from conventional logs such as gamma ray, SP, induction, and density
logs for all the wells in the figure. As was mentioned in the prior section, in this field
some of the wells did not have porosity indicator logs. Therefore synthetic version of
these logs had to be constructed for these wells prior to generation of virtual magnetic
resonance logs.

Prior to using all the six wells with magnetic resonance logs to generate virtual
magnetic resonance logs, a test and verification process should be performed in order
to confirm the validity of the approach for the specific field and formation under
investigation. This test and verification process is the main subject of this portion of
this article. During this process we demonstrate that the methodology of generating
virtual magnetic resonance logs is a valid and useful process in a field-wide basis.
We demonstrate this by using five of the wells, Christian Alice A5, Christian Alice
2, Christian Alice 6, Busby A5, and Busby 5, to develop an intelligent, predictive
model and generate virtual magnetic resonance logs for well Beck Fred 5. Since the
magnetic resonance logs for well Beck Fred 5 are available, but not used during the
model building process, it would provide an excellent verification well. Furthermore,
since well Beck Fred 5 is on the edge of the section of the field being studied, and
is somewhat outside of the interpolation area, relative to wells Christian Alice A5 . . .
Busby 5 (the five wells with magnetic resonance logs), it would stretch the envelope
on accurate modeling. This is due to the fact that the verification is done outside of
the domain where modeling has been performed. Therefore, one may claim that in a
situation such as the one being demonstrated here, the intelligent, predictive model is
capable of extrapolation as well as interpolation. Please note that here, extrapolation is
mainly an areal extrapolation rather an extrapolation based on the log characteristics.

Fig. 18 shows the actual and virtual magnetic resonance logs (MPHI – effective
porosity, and MBVI – irreducible water saturation) for well Beck Fred 5. This figure
shows that this methodology is quite a promising one. Although one may argue that
the virtual logs under-estimate both effective porosity and irreducible water saturation
in many cases, the fact that they are capable of detecting the trend and identifying the
peaks and valleys of the formation characteristics are very encouraging. It is believed
that using virtual porosity indicator logs such as neutron porosity, density porosity and
bulk density logs during the training process has contributed to the under-estimation
of the magnetic resonance logs. Although it was demonstrated that the virtual porosity
indicator logs are quite accurate, it is desirable to train the networks with the best
possible data.

Fig. 19 shows the actual and virtual magnetic resonance permeability logs – MPERM
– for the same well (Beck Fred 5). Since MPERM log is not a direct measurement
log rather a calculated log (it is a function of effective porosity and irreducible water
saturation logs), it is expected that the virtual logs under-estimate the permeability
when compared to actual calculated MPERM log. Again, the virtual log is capable of

GALAYAA BV / NIKRA27: pp. 605–632



VIRTUAL MAGNETIC RESONANCE LOGS, A LOW COST RESERVOIRDESCRIPTION TOOL 629

Fig. 18. Actual and virtual magnetic resonance logs for well Beck Fred 5.
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Fig. 19. Actual and virtual magnetic resonance permeability logs for well Beck Fred 5.

GALAYAA BV / NIKRA27: pp. 605–632



VIRTUAL MAGNETIC RESONANCE LOGS, A LOW COST RESERVOIRDESCRIPTION TOOL 631

detecting most of the trends in permeability values in this formation. If the virtual log
were used as a guide to identify perforation depth intervals in this formation, it would
have done its job well.

In order to test and verify the effectiveness of the virtual magnetic resonance logs, as
compared to its actual counterparts, they were used in a reserve estimation calculation.
In this calculation all parameters were kept constant and the only difference between
two sets of calculation were the use of virtual verses actual magnetic resonance logs.
The logs shown in Fig. 18 are used to perform reserve estimate calculations. Using the
virtual magnetic resonance logs the estimated reserves were calculated to be 138,630
MSCF/Acre while using the actual magnetic resonance logs the calculated reserve
estimates were 139,324 MSCF/Acre for the 400 ft of pay in this well. The 0.5%
difference in the calculated estimated reserves based on virtual and actual magnetic
resonance logs demonstrates that operators can used this methodology effectively to
reach at reserve estimates with much higher accuracy at a fraction of the cost. This will
allow operators make better reserve management, and operational decisions.

4. CONCLUSIONS

A new methodology was introduced that has the potential to reduce the cost of
reservoir characterization from well logs significantly. This methodology uses the
conventional well logs and generates virtual or synthetic magnetic resonance logs for all
the wells in a field. The development process requires that only a handful of wells in
a field be logged using the magnetic resonance logging tools. Then the data generated
from the magnetic resonance logging process is coupled with the conventional log data
and used to develop an intelligent, predictive model. After testing and verifying the
predictive model’s accuracy, it can be applied to all the wells in the field that have only
conventional logs. At the end of the process all the wells in the field will have magnetic
resonance logs. This process will help engineers in the filed to acquire a much better
handle on the reservoir characteristics at a fraction of the cost of running magnetic
resonance logs on all the wells in the field. This is especially true and beneficial for
fields that have many producing wells the already have been cased.

It was also demonstrated that virtual magnetic resonance logs could provide reserve
estimates that are highly accurate when compared to the reserve estimates that can be
acquired from actual magnetic resonance logs. The neural networks that are constructed
and trained for a particular formation may not be used to generate virtual MR logs
for other formations. This is similar to the case of virtual measurement of formation
permeability the methodology is formation dependent (Mohaghegh et al., 1996a).
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